organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Hydroxybenzylideneamino)-1,8naphthalimide

Fang-Fang Jian,* Li Du and Wei Yi

New Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: ffj2003@163169.net

Received 5 November 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.060; wR factor = 0.175; data-to-parameter ratio = 11.4.

The title compound, C19H12N2O3, was prepared by the reaction of hydrazine and salicylaldehyde with 1,8-naphthoic anhydride in refluxing dimethylformamide. The structure is stabilized by an intramolecular O-H···N hydrogen bond and the crystal packing exhibits $C-H \cdots O$ hydrogen bonds. The dihedral angle formed by the benzene and naphthalimide systems is 175.9°.

Related literature

For related literature, see: Niemz & Rotello (1997); Ofir (2006); Poteau et al. (2000); De Silva et al. (1996).

Experimental

Crystal data	
$C_{19}H_{12}N_2O_3$	c = 6.9540 (14) Å
$M_r = 316.31$	$\beta = 94.39 \ (3)^{\circ}$
Monoclinic, $P2_1/c$	V = 1432.7 (5) Å ²
a = 11.285 (2) Å	Z = 4
b = 18.310 (4) Å	Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$ T = 295 (2) K

Data collection

Bruker SMART CCD area-detector 2526 independent reflections 1873 reflections with $I > 2\sigma(I)$ diffractometer Absorption correction: none $R_{\rm int} = 0.028$ 7451 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ H atoms treated by a mixture of $wR(F^2) = 0.175$ independent and constrained S = 1.19refinement $\Delta \rho_{\text{max}} = 0.35 \text{ e} \text{ Å}^{-3}$ 2526 reflections $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ 221 parameters

 $0.30 \times 0.20 \times 0.18 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O3-H3A\cdots N2\\ C3-H3B\cdots O1^{i}\\ C14-H14A\cdots O2^{ii}\end{array}$	0.91 (4) 0.93 0.93	1.88 (4) 2.55 2.52	2.612 (4) 3.341 (4) 3.166 (4)	134 (4) 143 127
		3	1 3	

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2584).

References

- De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., McCoy, C. P., Maxwell, P. R. S., Rademacher, J. T. & Rice, T. E. (1996). Pure Appl. Chem. 68, 1443-1445.
- Niemz, A. & Rotello, V. M. (1997). J. Am. Chem. Soc. 119, 6833-6835.
- Ofir, Y. (2006). J. Mater. Chem. 16, 2142-2143.
- Poteau, X., Brown, A. I., Brown, R. G., Holmes, C. & Matthew, D. (2000). Dyes Pigm. 49, 91-96.
- Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc. Madison Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o4748 [doi:10.1107/S1600536807057066]

N-(2-Hydroxybenzylideneamino)-1,8-naphthalimide

F.-F. Jian, L. Du and W. Yi

Comment

1,8-Naphthlimide derivatives are an important class of compounds. 1,8-Naphthalimides exhibit hydrogen-bonding (Niemz *et al.*, 1997) and cation-dependent (Poteau *et al.*, 2000; De Silva *et al.*, 1996) fluorescence.

In the title compound, the bond lengths and angles are normal (Ofir *et al.*, 2006). The bond lengths of two C=O are little different, with 1.212 (4)Å for C19—O1 and 1.208 (4)Å for C8–O2, respectively. The dihedral angle formed by the phenyl ring and naphthalimide moiety is 80.6 (3)°. The molecular conformation is stabilized by a O—H…N hydrogen bond and the crystal packing shows, CH…O hydrogen bonds (Table 2).

Experimental

The single crystals of the title compound were obtained by the reaction hydrazine (0.1 mmol), 1,8-naphthalic anhydride (0.1 mmol) with salicylaldehyde (0.1 mmol) in refluxing DMF. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from a DMF solution at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H=0.93 Å, and with $U_{iso}=1.2U_{eq}$. The hydroxyl H atom was freely refined.

Figures

Fig. 1. The molecular structure and atom-labeling scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.

N-(2-Hydroxybenzylideneamino)-1,8-naphthalimide

Crystal data	
$C_{19}H_{12}N_2O_3$	$F_{000} = 656$
$M_r = 316.31$	$D_{\rm x} = 1.466 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 220 k
Hall symbol: -P 2y bc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 11.285 (2) Å	$\theta = 0-25^{\circ}$
<i>b</i> = 18.310 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 6.9540 (14) Å	T = 295 (2) K

$\beta = 94.39 \ (3)^{\circ}$	Block, yellow
$V = 1432.7 (5) \text{ Å}^3$	$0.30 \times 0.20 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	1873 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 1.8^{\circ}$
phi and ω scans	$h = -13 \rightarrow 13$
Absorption correction: none	$k = -17 \rightarrow 21$
7451 measured reflections	$l = -7 \rightarrow 8$
2526 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.175$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 1.5868P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.19	$(\Delta/\sigma)_{\rm max} < 0.001$
2526 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.3228 (2)	0.20728 (13)	0.6655 (4)	0.0573 (7)
O2	0.0289 (2)	0.04509 (12)	0.7451 (4)	0.0676 (8)

03	0.3368 (2)	-0.01677 (15)	0.4076 (4)	0.0571 (7)
N1	0.1751 (2)	0.12810 (13)	0.7147 (4)	0.0425 (7)
N2	0.2506 (3)	0.07138 (14)	0.6572 (4)	0.0485 (7)
C1	0.4126 (3)	-0.07501 (18)	0.9058 (6)	0.0518 (9)
H1A	0.3999	-0.0616	1.0316	0.062*
C2	0.4805 (3)	-0.1357 (2)	0.8730 (7)	0.0617 (11)
H2B	0.5136	-0.1633	0.9758	0.074*
C3	0.4986 (3)	-0.1551 (2)	0.6859 (7)	0.0597 (11)
H3B	0.5442	-0.1961	0.6635	0.072*
C4	0.4514 (3)	-0.11538 (19)	0.5336 (6)	0.0553 (10)
H4A	0.4651	-0.1294	0.4087	0.066*
C5	0.3827 (3)	-0.05398 (17)	0.5628 (6)	0.0447 (8)
C6	0.3629 (3)	-0.03349 (16)	0.7522 (5)	0.0430 (8)
C7	0.2908 (3)	0.02979 (17)	0.7936 (5)	0.0426 (8)
H7A	0.2743	0.0398	0.9199	0.051*
C8	0.0574 (3)	0.10867 (16)	0.7415 (5)	0.0423 (8)
C9	-0.0255 (3)	0.16947 (16)	0.7623 (4)	0.0372 (7)
C10	-0.1421 (3)	0.15537 (19)	0.7914 (5)	0.0476 (9)
H10A	-0.1687	0.1074	0.7969	0.057*
C11	-0.2206 (3)	0.2130 (2)	0.8128 (5)	0.0507 (9)
H11A	-0.2995	0.2030	0.8329	0.061*
C12	-0.1842 (3)	0.28320 (19)	0.8049 (5)	0.0451 (8)
H12A	-0.2383	0.3207	0.8196	0.054*
C13	-0.0651 (3)	0.30016 (16)	0.7746 (4)	0.0386 (7)
C14	-0.0231 (3)	0.37226 (17)	0.7648 (5)	0.0457 (8)
H14A	-0.0751	0.4109	0.7792	0.055*
C15	0.0915 (3)	0.38627 (17)	0.7348 (5)	0.0451 (8)
H15A	0.1174	0.4344	0.7297	0.054*
C16	0.1716 (3)	0.32912 (17)	0.7113 (5)	0.0416 (8)
H16A	0.2501	0.3395	0.6889	0.050*
C17	0.1350 (3)	0.25784 (16)	0.7212 (4)	0.0345 (7)
C18	0.0156 (3)	0.24226 (15)	0.7523 (4)	0.0323 (7)
C19	0.2195 (3)	0.19840 (16)	0.6968 (5)	0.0393 (7)
НЗА	0.297 (5)	0.026 (3)	0.432 (8)	0.13 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1	0.0383 (13)	0.0475 (15)	0.087 (2)	0.0010 (11)	0.0099 (13)	-0.0127 (13)
O2	0.0728 (18)	0.0271 (13)	0.106 (2)	-0.0027 (12)	0.0247 (16)	-0.0003 (13)
O3	0.0655 (17)	0.0497 (16)	0.0564 (17)	0.0107 (13)	0.0056 (13)	-0.0027 (13)
N1	0.0478 (16)	0.0285 (14)	0.0520 (17)	0.0096 (12)	0.0091 (13)	-0.0012 (12)
N2	0.0565 (18)	0.0345 (15)	0.0550 (19)	0.0149 (13)	0.0073 (14)	-0.0033 (13)
C1	0.0470 (19)	0.045 (2)	0.062 (2)	0.0022 (16)	-0.0014 (17)	0.0040 (18)
C2	0.044 (2)	0.044 (2)	0.095 (3)	0.0043 (16)	-0.007 (2)	0.011 (2)
C3	0.0362 (18)	0.0365 (19)	0.106 (4)	0.0048 (15)	0.005 (2)	-0.008 (2)
C4	0.0396 (18)	0.041 (2)	0.086 (3)	-0.0004 (16)	0.0107 (19)	-0.015 (2)
C5	0.0326 (16)	0.0341 (17)	0.068 (2)	-0.0033 (13)	0.0059 (16)	-0.0062 (16)

supplementary materials

C6	0.0329 (16)	0.0300 (16)	0.066 (2)	-0.0019 (13)	0.0051 (15)	-0.0032 (15)
C7	0.0415 (17)	0.0335 (17)	0.053 (2)	0.0023 (14)	0.0025 (15)	-0.0044 (15)
C8	0.053 (2)	0.0287 (17)	0.046 (2)	0.0023 (14)	0.0090 (15)	0.0006 (14)
C9	0.0418 (17)	0.0329 (16)	0.0372 (18)	0.0002 (13)	0.0043 (14)	-0.0016 (13)
C10	0.051 (2)	0.0408 (19)	0.052 (2)	-0.0077 (16)	0.0110 (16)	0.0007 (16)
C11	0.0382 (18)	0.060 (2)	0.054 (2)	0.0011 (16)	0.0090 (16)	0.0023 (18)
C12	0.0426 (18)	0.049 (2)	0.0438 (19)	0.0119 (15)	0.0052 (15)	0.0028 (16)
C13	0.0423 (17)	0.0360 (17)	0.0369 (18)	0.0100 (14)	-0.0007 (14)	-0.0019 (14)
C14	0.052 (2)	0.0311 (17)	0.053 (2)	0.0129 (15)	-0.0020 (16)	-0.0036 (15)
C15	0.055 (2)	0.0258 (16)	0.053 (2)	-0.0012 (14)	-0.0073 (16)	-0.0031 (14)
C16	0.0412 (17)	0.0376 (18)	0.0450 (19)	-0.0043 (14)	-0.0032 (14)	-0.0025 (14)
C17	0.0361 (16)	0.0308 (16)	0.0356 (17)	0.0012 (12)	-0.0037 (13)	-0.0045 (13)
C18	0.0389 (16)	0.0294 (15)	0.0283 (15)	0.0016 (12)	-0.0002 (12)	-0.0009 (12)
C19	0.0401 (18)	0.0353 (17)	0.0416 (19)	0.0025 (14)	-0.0015 (14)	-0.0065 (14)

Geometric parameters (Å, °)

O1—C19	1.212 (4)	C8—C9	1.469 (4)
O2—C8	1.208 (4)	C9—C10	1.370 (4)
O3—C5	1.346 (4)	C9—C18	1.414 (4)
ОЗ—НЗА	0.92 (6)	C10—C11	1.393 (5)
N1-C19	1.391 (4)	C10—H10A	0.9300
N1—C8	1.401 (4)	C11—C12	1.352 (5)
N1—N2	1.420 (3)	C11—H11A	0.9300
N2—C7	1.273 (4)	C12—C13	1.410 (5)
C1—C2	1.379 (5)	C12—H12A	0.9300
C1—C6	1.394 (5)	C13—C14	1.406 (4)
C1—H1A	0.9300	C13—C18	1.414 (4)
C2—C3	1.378 (6)	C14—C15	1.350 (5)
C2—H2B	0.9300	C14—H14A	0.9300
C3—C4	1.360 (6)	C15—C16	1.401 (4)
С3—Н3В	0.9300	C15—H15A	0.9300
C4—C5	1.389 (5)	C16—C17	1.372 (4)
C4—H4A	0.9300	C16—H16A	0.9300
C5—C6	1.403 (5)	C17—C18	1.410 (4)
С6—С7	1.457 (4)	C17—C19	1.466 (4)
C7—H7A	0.9300		
С5—О3—НЗА	117 (4)	C18—C9—C8	119.7 (3)
C19—N1—C8	126.8 (2)	C9—C10—C11	119.9 (3)
C19—N1—N2	115.1 (3)	C9-C10-H10A	120.0
C8—N1—N2	116.5 (2)	C11—C10—H10A	120.0
C7—N2—N1	114.5 (3)	C12—C11—C10	121.2 (3)
C2—C1—C6	120.6 (4)	C12—C11—H11A	119.4
C2-C1-H1A	119.7	C10-C11-H11A	119.4
C6—C1—H1A	119.7	C11—C12—C13	120.8 (3)
C3—C2—C1	119.2 (4)	C11—C12—H12A	119.6
С3—С2—Н2В	120.4	C13—C12—H12A	119.6
C1—C2—H2B	120.4	C14—C13—C12	122.9 (3)
C4—C3—C2	121.4 (3)	C14—C13—C18	118.4 (3)

C4—C3—H3B	119.3	C12—C13—C18	118.7 (3)
С2—С3—Н3В	119.3	C15—C14—C13	121.1 (3)
C3—C4—C5	120.5 (4)	C15-C14-H14A	119.5
C3—C4—H4A	119.7	C13—C14—H14A	119.5
C5—C4—H4A	119.7	C14—C15—C16	120.7 (3)
O3—C5—C4	118.5 (3)	C14—C15—H15A	119.6
O3—C5—C6	122.6 (3)	C16—C15—H15A	119.6
C4—C5—C6	119.0 (3)	C17—C16—C15	120.3 (3)
C1—C6—C5	119.3 (3)	C17—C16—H16A	119.8
C1—C6—C7	118.7 (3)	C15—C16—H16A	119.8
C5—C6—C7	122.0 (3)	C16—C17—C18	119.7 (3)
N2—C7—C6	120.1 (3)	C16—C17—C19	119.9 (3)
N2—C7—H7A	120.0	C18—C17—C19	120.4 (3)
С6—С7—Н7А	120.0	C17—C18—C13	119.8 (3)
O2—C8—N1	120.3 (3)	C17—C18—C9	121.2 (3)
O2—C8—C9	123.7 (3)	C13—C18—C9	119.0 (3)
N1—C8—C9	116.0 (3)	O1-C19-N1	119.9 (3)
C10—C9—C18	120.4 (3)	O1—C19—C17	124.4 (3)
C10—C9—C8	119.9 (3)	N1-C19-C17	115.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H3A…N2	0.91 (4)	1.88 (4)	2.612 (4)	134 (4)
C3—H3B···O1 ⁱ	0.93	2.55	3.341 (4)	143
C14—H14A···O2 ⁱⁱ	0.93	2.52	3.166 (4)	127

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x, y+1/2, -z+3/2.

Fig. 1

